A unified theory of brightness contrast and assimilation incorporating oriented multiscale spatial filtering and contrast normalization
نویسندگان
چکیده
Brightness induction includes both contrast and assimilations effects. Brightness contrast occurs when the brightness of a test region shifts away from the brightness of adjacent regions. Brightness assimilation refers to the opposite situation in which the brightness of the test region shifts toward that of the surrounding regions. Interestingly, in the White effect [Perception 8 (1979) 413] the direction of the induced brightness change does not correlate with the amount of black or white border in contact with the gray test patch. This has led some investigators to reject spatial filtering explanations not only for the White effect but for brightness perception in general. Instead, these investigators have offered explanations based on a variety of junction analyses and/or perceptual organization schemes. Here, these approaches are challenged with a critical set of new psychophysical measurements that determined the magnitude of the White effect, the shifted White effect [Perception 10 (1981) 215] and the checkerboard illusion [R.L. DeValois, K.K. DeValois, Spatial Vision, Oxford University Press, NY, 1988] as a function of inducing pattern spatial frequency and test patch height. The oriented difference-of-Gaussians (ODOG) computational model of Blakeslee and McCourt [Vision Res. 39 (1999) 4361] parsimoniously accounts for the psychophysical data, and illustrates that mechanisms based on junction analysis or perceptual inference are not required to explain them. According to the ODOG model, brightness induction results from linear spatial filtering with an incomplete basis set (the finite array of spatial filters in the human visual system). In addition, orientation selectivity of the filters and contrast normalization across orientation channels are critical for explaining some brightness effects, such as the White effect.
منابع مشابه
Oriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast
The White effect [Perception 8 (1979) 413] cannot be simply explained as due to either brightness contrast or brightness assimilation because the direction of the induced brightness change does not correlate with the amount of black or white border in contact with the gray test patch. This has led some investigators to abandon spatial filtering explanations not only for the White effect but for...
متن کاملMultiresolution wavelet framework models brightness induction effects
A new multiresolution wavelet model is presented here, which accounts for brightness assimilation and contrast effects in a unified framework, and includes known psychophysical and physiological attributes of the primate visual system (such as spatial frequency channels, oriented receptive fields, contrast sensitivity function, contrast non-linearities, and a unified set of parameters). Like ot...
متن کاملA multiscale spatial filtering account of the Wertheimer–Benary effect and the corrugated Mondrian
Blakeslee and McCourt [Blakeslee, B., & McCourt, M.E. (1997). Similar mechanisms underlie simultaneous brightness contrast and grating induction. Vision Research, 37, 2849-2869] demonstrated that a multiscale array of two-dimensional difference-of-Gaussian (DOG) filters provided a simple but powerful model for explaining a number of seemingly complex features of grating induction (GI), while si...
متن کاملExplaining brightness illusions using spatial filtering and local response normalization
We introduce two new low-level computational models of brightness perception that account for a wide range of brightness illusions, including many variations on White's Effect [Perception, 8, 1979, 413]. Our models extend Blakeslee and McCourt's ODOG model [Vision Research, 39, 1999, 4361], which combines multiscale oriented difference-of-Gaussian filters and response normalization. We extend t...
متن کاملA multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction
Blakeslee and McCourt ((1997) Vision Research, 37, 2849-2869) demonstrated that a multiscale array of two-dimensional difference-of-Gaussian (DOG) filters provided a simple but powerful model for explaining a number of seemingly complex features of grating induction (GI), while simultaneously encompassing salient features of brightness induction in simultaneous brightness contrast (SBC), bright...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Vision Research
دوره 44 شماره
صفحات -
تاریخ انتشار 2004